TOPIC PLAN

Partn er orga nizati on	UNS	
Topic	Function of Several Variables	
Less on title	Application of Partial Derivatives	
Lear ning objec tives	\checkmark Students will be recall their knowledge zbout partial derivatives from the previous lesson \checkmark Students will be introduced to various applications of partial derivatives and practise parial derivative calculation \checkmark Students are encouraged to check their results using various online tools and also find the limits up to which internet resources can help them.	Strategies/Acti vities \square Graphic Organizer Think/Pair/Shar e
Aim of the lectu re / Desc riptio n of the pract ical probl em	1. Find the tangent plane equation 2. Recognizing the use of partial derivatives in real time problems	\square Collaborative learning \square Discussion questions \square Project based learning \square Problem based learning Assessment for learning
Previ ous know ledge assu med:	- Basic calculus - Partial derivatives - differentiating techniques	Observations \square Conversation \square Work sample \square Conference \square Check list \square Diagnostics Assessment as

[^0]
Intro

ducti
on / Theo retica
I
basic
s

An Economics Application: The Cobb-Douglas

 Production FunctionOne model of production that is frequently considered in business and economics is the Cobb-Douglas production function:

$$
p(x, y)=A x^{a} y^{1-a}, \text { for } A>0 \text { and } 0<a<1 \text {, }
$$

where p is the number of units produced with x units of labor and y units of capital. (Capital is the cost of machinery, buildings, tools, and other supplies.) The partial derivatives

$$
\frac{\partial p}{\partial x} \text { and } \frac{\partial p}{\partial y}
$$

are called, respectively, the marginal productivity of labor and the marginal productivity of capital.

EXAMPLE 2 A cellular phone company has the following production function for a smart phone:

$$
p(x, y)=50 x^{2 / 3} y^{1 / 3}
$$

where p is the number of units produced with x units of labor and y units of capital.
a) Find the number of units produced with 125 units of labor and 64 units of capital.
b) Find the marginal productivities.
c) Evaluate the marginal productivities at and $x=125$ and $y=64$.

Solution
a) $p(125,64)=50(125)^{\frac{2}{3}}(64)^{1 / 3}=5000$ units
b) Marginal productivity of labor is $\frac{\partial \mathrm{p}}{\partial \mathrm{x}}=\mathrm{p}_{\mathrm{x}}=50 \frac{2}{3} \mathrm{x}^{-1 / 3} \mathrm{y}^{1 / 3}=\frac{100 \mathrm{y}^{1 / 3}}{3 \mathrm{x}^{1 / 3}}$,

Marginal productivity of capital is

$$
\frac{\partial \mathrm{p}}{\partial y}=\mathrm{p}_{\mathrm{y}}=50 \frac{1}{3} \mathrm{x}^{2 / 3} \mathrm{y}^{-2 / 3}=\frac{50 \mathrm{x}^{2 / 3}}{3 \mathrm{y}^{2 / 3}}
$$

c) For 125 units of labor and 64 units of capital, we have

$$
p_{x}(125,64)=26 \frac{2}{3} \text { and } p_{y}(125,64)=26 \frac{1}{24}
$$

A Cobb-Douglas production function is consistent with the law of diminishing returns. That is, if one input (either labor or capital) is held fixed while the other increases infinitely, then production will eventually increase at a decreasing rate. With such functions, it also turns out that if a certain maximum production is possible, then the expense of more labor, for example, may be required for that maximum output to be attainable.

TANGENT PLANES AND LINEAR APPROXIMATIONS

Earlier we saw how the two partial derivatives f_{x} and f_{y} can be thought of as the slopes of traces. We want to extend this idea out a little in this section.

learning
\square Self-
assessment
\square Peer-
assessment
\square Presentation
\square Graphic
Organizer
\square Homework

Assessment of learning
$\square Q u i z$
\square Presentation
Project \square Published work

The graph of a function $z=f(x, y)$ is a surface in three dimensional space and so we can now start thinking of the plane that is "tangent" to the surface as a point.

Let's start out with a point $\left(x_{0}, y_{0}\right)$ and let's let C_{1} represent the trace to $f(x, y)$ for the plane $y=y_{0}$ (i.e. allowing x to vary with y held fixed) and we'll let C_{2} represent the trace to $f(x, y)$ for the plane $x=x_{0}$ (i.e. allowing y to vary with x held fixed). Now, we know that $f_{x}\left(x_{0}, y_{0}\right)$ is the slope of the tangent line to the trace C_{1} and $f_{y}\left(x_{0}, y_{0}\right)$ is the slope of the tangent line to the trace C_{2}. So, let L_{1} be the tangent line to the trace C_{1} and let L_{2} be the tangent line to the trace C_{2}.

The tangent plane will then be the plane that contains the two lines L_{1} and L_{2}.
Geometrically this plane will serve the same purpose that a tangent line did in Calculs I. A tangent line to a curve was a line that just touched the curve at that point and was "parallel" to the curve at the point in question. Well tangent planes to a surface are planes that just touch the surface at the point and are "parallel" to the surface at the point. Note that this gives us a point that is on the plane. Since the tangent plane and the surface touch at (x_{0}, y_{0}) the following point will be on both the surface and the plane.

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)
$$

What we need to do now is determine the equation of the tangent plane.

Tangent plane

We know that the general equation of a plane is given by,

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point that is on the plane, which we have. Let's rewrite this a little. We'll move the x terms and y terms to the other side and divide both sides by c. Doing this gives,

[^1]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

